Institución Educativa San Jose de Venecia

"Aprovecha las experiencias pasadas, programa el futuro, pero no olvides vivir el presente"

El Péndulo Simple Onces - 2019

I. OBJETIVO

- a) Comprobar algunas de las leyes del Péndulo en forma experimental.
- b) Calcular de acuerdo con los datos experimentales la aceleración de la gravedad.

II. MATERIALES

Un metro, un cronometro, 3 masas diferentes, cuerda inextensible de 300 cm, soporte universal, 2 hojas de papel milimetrado, transportador, curvígrafo, tijeras (Trapo para limpiar).

III. TEORIA

El Péndulo Simple es una masa que oscila a uno y otro lado de su posición de equilibrio. Si L es su longitud y g la aceleración gravitacional, el periodo de oscilación es:

$$\mathbf{T} = \mathbf{2} \,\pi \sqrt{\frac{L}{g}}$$

Las leyes del péndulo afirman que el periodo del péndulo es:

- 1. Directamente proporcional a la raíz cuadrada de su longitud.
- 2. Inversamente proporcional a la raíz cuadrada de la aceleración gravitacional.
- 3. Independiente de la masa del péndulo.
- 4. Independiente de la amplitud mientras ésta sea pequeña ($\theta \le 6^{\circ}$).

IV. PROCEDIMIENTO

- 1. Un extremo de la cuerda se amarra al soporte, del otro extremo suspendemos una masa, de tal manera que quede de una longitud de 120 cms; para el péndulo que resulta, tome el tiempo de 15 oscilaciones completas. Este procedimiento se realiza tres veces para esta longitud y se anotan los tiempos en la tabla de datos. Recuerde que el t_{promedio} = (t₁ + t₂ + t₃)/3 y que T = t_{promedio}/# oscilaciones.
- 2. Reduzca la longitud de la cuerda a 100 cms y realice el mismo proceso, también por tres veces y de igual manera anote el tiempo promedio en la tabla.
- 3. Haga lo mismo para las longitudes señaladas en la tabla de datos # 1.

Tabla de Datos #1

Longitud	# de	t ₁ (seg)	t ₂ (seg)	t ₃ (seg)	$\mathbf{t}_{\mathbf{promedio}}$	T (seg)	$T^2 (seg^2)$
(cms)	Oscilaciones				(seg)		
120	15						
100	15						
80	15						
60	15						
50	15						
40	15						
30	15						
25	15						
20	15						
15	15						

Institución Educativa San Jose de Venecia

"Aprovecha las experiencias pasadas, programa el futuro, pero no olvides vivir el presente"

4. Tome una longitud fija de 100 cms para un péndulo y mida el tiempo de 15 oscilaciones para cada una de las tres masas. Consigne los resultados en la tabla de datos # 2.

Tabla de Datos # 2

Masa (gr.)	# de	t ₁ (Seg)	t ₂ (seg)	t ₃ (seg)	tpromedio (seg)	T (seg)
	Oscilaciones					
200	15					
100	15					
50	15					

5. Construya un péndulo de 100 cms de longitud y tomando las amplitudes que se señalan en la tabla de datos # 3, mida el tiempo para 15 oscilaciones; la amplitud es la distancia entre el punto de equilibrio y el punto desde donde se suelta el péndulo. Anote los resultados en la tabla # 3.

Tabla de Datos #3

Amplitud	# de	t ₁ (Seg)	t ₂ (seg)	t ₃ (seg)	tpromedio (seg)	T (seg)
(grados)	Oscilaciones					
15°	15					
10°	15					
5°	15					

V. CUESTIONARIO

- 1. Con los datos del periodo (T) y la longitud (L) de la tabla de datos # 1, elabore una grafica del período en función de la longitud. Que relación encuentras, explica.
- 2. Con los datos de la misma tabla elabore una grafica del periodo al cuadrado (T²) en función de la longitud (L). Encuentre la pendiente de esta grafica y su ecuación. explique
- 3. Reemplazando los datos de la tabla # 1 en ecuación $\mathbf{g} = 4\pi^2 \frac{L}{T^2}$ para cada una de las longitudes dadas. Escriba los resultados de aceleración de la gravedad en la tabla # 4 y halle una gravedad promedio en Venecia. Explique.

Tabla de Datos #4

Longitud	120	100	80	60	50	40	30	25	20	15
(cms)										
Gravedad										
(cms/seg ²)										

- 4. Que puedes concluir de los resultados para el período del péndulo obtenidos en la tabla # 2. Explique.
- 5. Que puedes concluir de los resultados para el período del péndulo obtenidos en la tabla # 3. Explique.

VI. CONCLUSIONES (mínimo tres)